

Tetrahedron Vol. 50, No. 24, pp. 7265-7268, 1994 **Copyright 0** 1994 Elsevier Science Ltd Printed in Great Britain. All rights reserved 00404020/94 \$7.00+0.00

0040-4020(94)E0346-U

Diastereoselective Desulfurization of 5,6-Dihydro-1,4-dithiins. Synthesis of Muscalure from *Musca domestica* **L.**

Romualdo Caputo, Giovanni Palumbo: Silvana Pedatella

Dipartimcnto di Chimica Organica c Biologica deU'Universitt9 Via Mezwcannone, 16 I-80134 Napoli (Italy)

Abstmct: A procedure is **reported for the chemo- and stereo-selective sulfur removal from 5,6-dihydm-1,4-dithiins which completes the pathway to synthesize cis configurated olefms from carbonyl compounds. A four step synthesis of (Z)-9-tricosene (muscalure) with the dithiin moiety serving as the penultimate olefm precursor is also reported as an example of the proposed syntbelic strategy.**

The 5.6-dihydro-1,4-dithiin moiety has been shown¹ to be a useful synthetic intermediate to mimic *cis* configurated double bonds, in the preparation of simple alkenes and other unsaturated compounds as well. Indeed, 5.6~dihydro-1,4dithiins can be easily obtained from the readily available ethanediyl S,S-acetal (1.3 dithiolane) derivatives of carbonyl compounds, by smooth treatment with bromine or N-bromosuccinimide in anhydrous acetonitrile at room temperature. 2

However, the actual synthetic utilization of such intermediates was somewhat limited by the subsequent desulfurization step, since the common desulfurization conditions $3-6$ are often plagued by poor stereoselectivity as well as by oveneduction of the double bond formed, thus leading to undesired by-products. Therefore. we began a comprehensive investigation on the diastereoselective sulfur removal from S,6-dihydro-1,4dithiiis and now wish to report in this paper some of the more significant results we have obtained. Based on the current literature, the reducing systems we have tested [utilizing 2,3-diphenyl-5,6-dihydro-1,4-dithiin (1a) as a model compound] are Raney nickel W2,⁴ NiCl₂/NaBH₄ (nickel boride),⁵ and Ti(OPrⁱ)_A/LiAlH₄ complex,⁷ under various experimental conditions.

The principal results of this investigation are reported in Table 1: from our point of view, practically all the experiments were quite unsatisfactory, if stereoselectivity of sulfur removal, overreduction, and overall **yield** of the desulfurization process are considered. Suitable conditions to conjugate all these features were therefore investigated and eventually the desulfurization of the starting S,6-dihydro-1,4-dithiin **la was** devised by using Raney nickel W2 in glacial acetic acid for a few minutes at room temperature: as a matter of fact, under these conditions, **la** is stereoselectively converted into cis-stilbene in satisfactory yield and without traces (GCJMS, 1H NMR) of its fruns isomer and/or 1,2_diphenylethane (overreduction product), only accompanied by SOme unreacted starting material.

Such conditions seem to be rather general, as is shown by the experiments reported in Table 2, and

a) $R^1 = R^2 = Ph$; b) $R^1 = Ph$, $R^2 = CH_2Ph$; c) $R^1 = Ph$, $R^2 = CH(OH)C_4H_9$; d) $R^1 = C_8H_{17}$, $R^2 = C_{13}H_{27}$

Reducing system ^a		Solvent	Temp. $(^{\circ}C)$	Time (min)	Products ^b			
Ra-Ni W2	(1.2 g)	dioxane	20	30	30	30	30	10
\bullet	\bullet	diox./acetone ^{c,4}	20	30	20	10	40	30
NiCl2:NaBH4	(21:18)	EtOH	65	60	40	۰	۰	60
Ti(OPr ⁱ)4:LiAlH4	(8:2)	THF	70	150	۰	20	75	-5
	$\bullet\bullet$	THF	20	150	۰	30	10	60
	\bullet	THF	0	150				100
w	(8:4)	THF	20	150	\blacksquare	30	60	10
\pmb{v}	(8:16)	THF	20	90	۰	50	50	$\qquad \qquad \blacksquare$
" $[+$ quinoline $(0.15)]$	×	THF	20	15		100	\bullet	

Table 1 - Desulfurizations of 2,3-Diphenyl-5,6-dihydro-1,4-dithiin (1a) under Various Conditions

^a The reported amounts of reducing agents are expressed in number of mmol (excepting Ra-Ni, g) referred to 1.0 mmol of starting product. b Molar ratios of cis: trans: overreduction product: recovered starting product. c Ratio 1:1.</sup></sup>

a Raney nickel is used in a ratio of 6 g (wet) per 1.0 mmol of starting product, b The J value = 16 Hz for the E diastereomer (cfr. ref. 13).

represent to the best of our knowledge the first example of a reliable stereoselective desulfurization procedure. Beside, they complete and make effective the 5.6-dihydro-1.4-dithiin chemistry in mimicking *cis* configurated double bonds.

It is also noteworthy that the desulfurization can be stereoselectively oriented toward the formation of the *trans* configurated double bond, when $Ti(OPr)_d/LiAlH_d$ and quinoline³ are used, as is reported in Table 1.

To demonstrate the utility of the dithiin approach for producing cis configurated double bonds, we have prepared the sex pheromone muscalure, 9 (Z)-9-tricosene (2d), from the common house fly Musca domestica L. by a quick synthesis in which the 5,6-dihydro-1,4-dithiin moiety serves as the penultimate olefin precursor (Scheme 1). Treatment of decanal ethanediyl S,S-acetal (3) by NBS in anhydrous chloroform afforded 2-octyl-5,6-dihydro-1,4-dithiin (4). The latter was then treated with Bu"Li, at -78° C in THF, and the resulting sulfurstabilized carbanionic species coupled¹ with 1-iodotridecane to afford the muscalure-parent 5,6-dihydro-1,4dithiin 5. The stereoselective desulfurization of 5, under the above reported conditions, eventually gave the desired pheromone 2d, in 80% yield from the parent dithiin 5 and 69% overall yield from the starting decanal.

 $i = HSCH_2CH_2SH$, AcOH, TosOH, r. t., 60 min; ii = NBS, dry CHCl₃, r. t., 30 min; iii = BuⁿLi, dry THF, under Ar,-78° C, 15 min; iv = ICH₂(CH₂)₁₁ CH₃, dry THF, under Ar, 0° C, 20 min; $v =$ conditions reported in Table 2.

Scheme 1 **- Stereoselective Synthesis of Muscnlure vin 5,6-Dihydro-1,4-ditbiin Chemistry**

EXPERIMENTAL

Raney nickel W2 (water slurry) was purchased from Fluka. ¹H NMR spectra were recorded on a Bruker WH 270 instrument. GC/MS analyses were performed on a Hewlett-Packard 5980 GS / 5971 MS instrument.

Desulfurizufion ofla. Typical procedure. A solution of la (0.10 g; 0.37 mmol) in glacial acetic acid (10 cm3) is added in one portion to a stirred suspension of Ra-Ni W2 $(2 g, wet)$ in the same solvent $(10 cm³)$ at room temperature and under dry argon (or nitrogen) stream. The resulting suspension is stirred for 10 min (GC/MS monitoring). Then the solid is filtered off and washed with glacial acetic acid (3 x 5 cm³). The filtrate is neutralized with saturated aq Na₂CO₃ and extracted with Et₂O (3 x 100 cm³). The combined organic layers are washed with water until neutral, dried (Na_2SO_4) , and evaporated in vacuo to afford a crude residue that, after chromatography (silica gel; 8:2 light pet.:Et₂O), gives the pure oily cis-stilbene¹⁰ (2a, Table 2) (0.57x10⁻¹ g; 85% yield).

Under the same conditions the olefins 2b, 2c and 2d were prepared from their parent 5,6-dihydro-1,4-dithiins. Desulfurization times, yields, and significant 1 H NMR signals are summarized in Table 2.

Cross-over desulfurization of Ia. Typical procedure. To a solution of Ti(OPrⁱ)₄ (0.88 cm³; 2.96 mmol) in anhydrous THF (5 cm³), at room temperature and under dry argon (or nitrogen) stream, a suspension of LiAlH₄ (0.22 g; 5.92 mmol) in the same solvent (5 cm³) is added dropwise. After 1 h stirring, a solution of 1a $(0.10 \text{ g}; 0.37 \text{ mmol})$ and quinoline $(6.5 \times 10^{-3} \text{ cm}^3; 5.5 \times 10^{-2} \text{ mmol})$ in anhydrous THF is then added dropwise to the suspension. After 25 min (GC/MS monitoring) the reaction mixture is treated with brine and 1 M aq HCl (10 cm³) and extracted with Et₂O (3 x 100 cm³). The combined organic layers are washed with water until neutral, dried (Na₂SO₄), and evaporated *in vacuo*. Chromatography (silica gel; 9:1 light pet.:Et₂O) of the crude residue finally affords the pure trans-stilbene¹⁰ (0.72x10⁻¹ g; 100% yield).

Z-Nonyl-1,3-dithiolane (3). To a magnetically stirred solution of freshly distilled decanal (10 g; 64 mmol) in glacial acetic acid (20 cm³) p-toluenesulfonic acid (1.2 g; 6.4 mmol) and ethanedithiol (5.4 cm³; 64 mmol) are added in sequence, both in one portion, at room temperature, the stirring being continued for 1 h. The reaction is then quenched by adding 10% aq Na₂CO₃ (40 cm³) and the resulting mixture is extracted with Et₂O (3 x 100 $cm³$). Evaporation in vacuo of the combined ethereal extracts, after their washing with water until neutral and drying (Na₂SO₄), affords an amber oil the distillation of which at reduced pressure (3.0 mbar, 10 cm Vigreux column, ϕ 1.5 cm) yields the pure title compound 3 (14.7 g; 99% yield) as a colourless liquid bp 100° C; ¹H NMR: δ 3.18 (s, 4H, S-CH₂-CH₂-S); 4.40 (t, 1H, J=6 Hz, CH).

2-Octyl-5,6-dihydro-1,4-dithiin (4). To a magnetically stirred solution of 2-nonyl-1,3-dithiolane (3) (1.0 g; 4.3 mmol) in anhydrous CHCl₃ (100 cm³) a suspension of N-bromosuccinimide (1.1 g; 6.5 mmol) in the same solvent (60 cm³) is added in one portion. After about 30 min at room temperature, the reaction mixture is treated with solid NaHCO₃ excess and then water. Extraction with Et₂O (3 x 100 cm³) gives an organic layer which is washed with water until neutral, dried $(Na₂SO₄)$, and evaporated in vacuo to afford a yellow oil. Chromatography of the latter (silica gel; 97:3 light pet.:EbO) yields the title compound 4 accompanied by about 10% starting material 3. This mixture is treated with $BF_3·E₁$ C and HgO [proper amounts to hydrolize the latter, according to a reported¹¹ procedure] thus affording, after chromatography (silica gel; light pet.) the pure 4 as an oil (0.88 g; 89% yield); ¹H NMR: δ 2.20 (m, 2H, CH₂-C=); 3.15 (m, 4H, S-CH₂-CH₂-S); 5.85 (s, lH, vinylic II).

2-Octyl-3-tridecyl-5,6-dihydro-1,4-dithiin (5). To a solution of pure 4 (0.30 g; 1.56 mmol) in anhydrous THF (5 cm^3) , at -78° C under dry argon (or nitrogen) atmosphere, 1.6 M BuⁿLi in n-hexane (1.16 cm³; 1.9 mmol) is added dropwise *via* cannula over 10 min under magnetic stirring. After 15 min freshly prepared¹² 1-iodotridecane (0.59 g; 1.9 mmol) in the same solvent (6 cm³) is also added *via* cannula. The temperature is kept at -78° C for 15 min and then let to raise to room temperature. After 20 min the reaction mixture is treated carefully with 10% aq NH₄Cl (15 cm³) and extracted with Et₂O (3 x 100 cm³). The combined organic layers are washed with water until neutral, dried (Na₂SO₄), and evaporated *in vacuo*. Chromatography (silica gel; light pet.) of the crude residue finally affords pure 5 (0.58 g; 90% yield); ¹H NMR δ 0.87 (t, 6 H, J=6.0 Hz, CH₃); 2.20 (*t*, 4H, $J=7.0$ Hz, $=CH_2$ -); 3.02-3.21 (*m*, 4H, S-CH₂-CH₂-S).

(Z)-9-bicosenc (2d). Pure 2-octyl-3-tridecyl-5,6dihydro-1,4-dithiin (5) was treated with Ra-Ni W2 in glacial acetic acid under the **conditions of the typical desulfurization procedure reported above. The title compound 2d** was obtained in 80% yield. No traces of its specially prepared $[Ti(OPr)_4 : LiAlH_4 :$ quinoline]³ trans isomer could be detected by GC/MS analysis. Significant ¹H NMR signals are reported in Table 2.

REFERENCES AND NOTES

- 1. Caputo, R.; Ferteri, C.; Longobardo. L.; Palumbo, G.; Pedatella, S. Synrh. *Commun. 1994, in press.*
- **2.** Caputo, R.; Ferreri, C.; Palumbo, G. *Synthesis.* **1991,223.**
- 3. Becker, S.; Fort, Y.; Caubère, P. *J. Org. Chem.*, **1990**, 55, 6194 and literature cited therein.
- **4.** Augustine, R.L. *Catalytic Hydrogenation,* 1965, Marcel Dekker Inc, New York, pp. 26. 132.
- **5.** Truce, W.E.; Perry, F.M.,J. *Org. Chem., 1965,30,1316.*
- **6.** *Saigo, K.;* Hashimoto, Y.; Fang, L.; Hasegawa, M. *Heterocycles,* **1989,29,2079.**
- **7.** $Ti(OPr)_{d}/LiAlH_{d}$ was utilized under the same conditions of the reported (ref. 6) TiCl₄/LiAlH₄ reducing agent. The higher acidity of TiCl₄ leads indeed to an effective sulfur complexation by Ti^{ty} (cfr. also ref. 1 and 8) and the consequent sluggishness of the reaction.
- **8.** Ferreri, C.; Palumbo, G. ; Caputo, R. in Trost, B.M. *Comprehensive Organic Synthesis*, 1991, Pergamon Press plc, Oxford (UK), vol. 1, p 141.
- 9. Carlson. D.A.; Mayer, M.S.; Silhacek, D.L.; James, J.D.; Beroza, M.; Bierl, B.A. *Science,* **1971.174,76.**
- 10. Wheeler, O.H.; Bade de Pabon, H.N., J. *Org.* Chem., 1965,30,1473.
- 11. Vedejs, E.; Fuchs, P.L. J. *Org.* Chem., 1971.36, 366.
- 12. Raphael, R.A.; Sondheimen. F. J. *Chcm. Sot., 1950,210O.*
- 13. *Laszlo,* P.; Von Ragub Schleyer, P. *Bull. Sot. Chim. France, 1964, 87.*

(Received in UK 21 *Murch* 1994; *accepted 15 April* 1994)